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the carbocyclic core of zoanthenol
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An unusual loss of CO was observed during a key cyclization event in efforts toward the total synthesis of
zoanthenol. The synthesis of the cyclization precursor and a proposed mechanism for decarbonylation are
detailed.
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Zoanthenol (1) is a member of the zoanthamine family of mar-
ine alkaloids. In addition to their complex, polycyclic structural
framework, the zoanthamines display a range of biological activi-
ties including anti-osteoporotic activity in ovariectomized mice,
inhibition of inflammation in mouse ears, cytotoxicity against mur-
ine leukemia cells, broad-spectrum antibacterial activity, and inhi-
bition of human platelet aggregation.1 The only completed total
syntheses of molecules in this family targeted norzoanthamine,
and were published by Miyashita et al.2 and more recently by
Kobayashi and co-workers3 (Fig. 1).

Recently, we described an acid-mediated 6-endo SN
0-type cycli-

zation to construct the carbocyclic core of zoanthenol.4 In the
event, allylic alcohol 2 was converted smoothly to tricycle 3 upon
treatment with neat trifluoroacetic acid at 50 �C (Eq. 1). While tri-
cycle 3 initially seemed well disposed to complete the synthesis,
our efforts to install the all-carbon quaternary stereocenter at
C(9) were unsuccessful. Anticipating that the remote C(9) quater-
nary stereocenter would not alter the stereochemical outcome of
the acid-mediated cyclization, our retrosynthetic analysis was re-
vised to incorporate its synthesis prior to the key cyclization step.
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Thus, our revised retrosynthetic analysis begins with the simplifica-
tion of zoanthenol (1) to tricycle 4 (Scheme 1). Disconnection at the
B–C ring junction via retro-acid-mediated cyclization reveals allylic
ll rights reserved.

: +1 626 564 9297.
alcohol 5, which could be accessed from benzylic Grignard 6 and
enal 7. Enal 7 was envisioned to be accessible from triol 8.5

Beginning from triol 8, it was anticipated that treatment with
anhydrous copper(II) sulfate in acetone6 would selectively afford
acetonide 9 (Scheme 2). In the event, a mixture of acetal products
9 and 10 was formed. A similar competition between the formation
of six- and seven-membered ring acetals had been observed previ-
ously.7 Fortunately, the seven-membered acetal (9) can be isomer-
ized to the desired acetonide in 50% conversion and with 100%
mass recovery, which allows access to synthetically useful quanti-
ties of acetonide 10. Our next goal was to homologate the primary
alcohol by one carbon. Thus, olefin 10 was hydrogenated to give
11, which in turn was activated by mesylation, and was displaced
with KCN to form nitrile 12. Given the challenging nature of SN2
chemistry at neopentyl centers,8 we were delighted to observe
good yields in the homologation sequence.

Desilylation of 12 with TBAF in THF at 40 �C revealed a second-
ary alcohol, which was quantitatively converted to ketone 13 un-
der Swern oxidation conditions (Scheme 3). The methylation of
ketone 13 was accomplished by reverse dropwise addition of the
enolate solution into methyl iodide at �35 �C to afford the desired
methyl ketone 14 in 78% yield. Methyl ketone 14 was then enolized
and trapped with Tf2NPh to give enol triflate 15 in 97% yield. Stille
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coupling with vinyl tributylstannane proceeded smoothly to pro-
vide diene 16.

Nitrile 16 was then converted to enal 7 by hydrolysis of the ni-
trile to the corresponding carboxylic acid followed by oxidative
cleavage of the terminal olefin (Scheme 4). Addition of Grignard re-
agent 6 to a solution of enal 7 provided allylic alcohol 5 in 94% yield
and with a greater than 10:1 diastereomeric ratio. Given our expe-
rience with this type of cyclization, we anticipated formation of
tetracycle 17 upon treatment with neat TFA at ambient tempera-
ture. To our delight, we observed the formation of a new cyclized
compound displaying the desired relative stereochemistry at
C(12). However, we were surprised to find that there were no sig-
nals in the 13C NMR and IR spectra corresponding to the lactone
functionality that we expected in the desired product (17). We ten-
tatively assigned the observed product as 18. Indeed, X-ray diffrac-
tion data obtained from a single crystal confirmed both the desired
relative stereochemistry and the formation of a tetrahydrofuran
ring.
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A potential mechanism by which the observed product may be
formed is outlined in Scheme 5. Lactonization and elimination of
the C(10) acetal should afford intermediate 19. Protonation of the
lactone carbonyl would induce an equilibrium between highly sta-
bilized carbocation 20 and intermediate 21. The stability of inter-
mediate 20 likely aids in the formation of the product in the high
yields observed.9 Given the extraordinary selectivities observed
for this system, we hypothesized that the cyclization event occurs
much more quickly than the C(23)–C(24) bond cleavage and that
protonated lactone 21 is the intermediate that undergoes cycliza-
tion. Following cyclization, carboxylic acid 22 condenses with an
equivalent of TFA to form mixed anhydride 23. This anhydride
may undergo decomposition to form acylium 24, releasing an
equivalent of TFA. The pendant C(8) alcohol would then attack
either activated anhydride 23 or acylium 24 to release CO and to
form the tetrahydrofuran-containing product 18.

In summary, we have described an efficient approach to the
synthesis of intermediate 3, highlighted by a challenging SN2 ni-
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trile displacement and a highly efficient, stereoselective Grignard
addition to access the desired allylic alcohol. The cyclization of this
allylic alcohol represents a truly remarkable reaction, wherein a
desilylation, acetonide elimination, and CO extrusion all occur in
addition to the desired cyclization. These transformations occur
in one reaction flask to form the desired diastereomer of a tetracy-
clic compound possessing three all-carbon quaternary stereocen-
ters in 76% yield. Efforts to apply this approach to a system
wherein decarbonylation is not observed are ongoing.
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